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Abstract

Inspired by the Silicon Valley Bank run and building on Diamond-
Dybvig (1993), we develop a model in which asset price fluctuations
can trigger bank runs. Liquidation amounts to selling assets at their
market price. Depositors can buy and hold the assets after paying
an idiosyncratic cost. We characterize the equilibria. We show how
fundamental runs happen when market interest rates exceed a criti-
cal threshold. Deposit insurance can prevent self-enforcing runs but
incurs losses during fundamental runs or requires depositor bail-in.
Regulatory measures ensuring price resilience reduce run risks, but at

the expense of depositor welfare.
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1 Introduction

The collapse of Silicon Valley Bank in early 2023 might have been viewed
as likely ex post, but it is fair to consider it surprising ex ante. Rather
than investing in opaque financial instruments or engaging in high-wire fi-
nancial engineering, the Silicon Valley Bank followed a conventional maturity
transformation model: it accepted deposits and invested in long-term U.S.
Treasury bonds. However, when interest rates rose and therefore the market
price for long-term bonds fell early in 2023, the SVB was bankrupt, when
using mark-to-market accountingll] If a sizeable share of depositors had held
their deposits to maturity, the SVB would have still been profitable. How-
ever, many of these depositors were large, not FDIC-insured, and closely
followed financial markets and social media; a bank run ensued.

In this paper, we aim to examine these events through the lens of a bank
run model in the tradition of Diamond and Dybvig (1983), with one key
difference: the asset can be traded in period 1. Depositors can withdraw early
and purchase and hold the asset themselves after paying an idiosyncratic
transaction cost, rather than relying on the bank deposit payout down the
road. One can think of this option more broadly as shifting funds out from a
deposit account and into a money market fund holding these securities. This
setup allows patient depositors to exit the bank if market returns exceed the
return on deposits. As a result, the risk of a run no longer stems only from
panic withdrawals but also from shifts in market interest rates. Intriguingly,
such a “fundamental run” is the more plausible, the easier the assets can be
traded on the market: boring banking makes maturity-risk-driven runs more
likely.

We begin by deriving a benchmark deposit contract when depositors earn

at least as much by staying with the bank as by withdrawing and reinvesting

1One could argue, that SVB was liquid, but bankrupt.



in the market. We demonstrate how our model can lead to fundamental
runs, where a drop in asset value below a critical threshold, or equivalently,
a rise in the implied interest rate above a critical threshold, makes the outside
option more attractive to some than retaining their deposits. We show that
a “fundamental bank run” must happen, even when the price of the asset
declines only mildly, given mild parameter restrictions. These runs are absent
in Diamond - Dybvig (1983), and are the key novel feature of our paper. Our
model can give rise to partial runs that happen when only a fraction of
depositors withdraw, as well as the more commonly analyzed complete runs,
when all withdraw.

We analyze the limits of standard policy tools. Deposit insurance reduces
panic-driven runs by reassuring depositors, but it fails to prevent fundamen-
tal runs when asset prices fall enough to make early withdrawal optimal.
In those cases, the deposit insurer absorbs the loss. Tighter regulation of
deposit contracts can reduce run risks, but it also reduces depositor welfare

and the ability to smooth consumption.

1.1 Relationship to the literature

This note draws on the extensive literature following Diamond and Dybvig
(1983). Allen and Gale (2009) provide an excellent survey and introduction.
Gorton and Winton (2002) provide a more general overview of the literature
on financial intermediation. Wallace (1988), McCulloch et al (1998), Selgin
(1989, 2020), and McCulloch (2022) examine the framework in depth and
discuss criticisms and alternative arrangements.

Our paper is motivated by the 2023 banking stress and the role of as-
set price declines. This is not a new phenomenon, of course. Rolnick and
Weber (1984) provide historical empirical evidence on how asset price fluc-

tuations contributed to past banking crises. Jamilov et al (2024) examine



the macroeconomic consequences of systemic bank runs over two centuries ]
Calomiris and Haber (2014) have argued that banks are “fragile by design”,
with Dowd (1992) providing a literature review of banking instability. Green
and Lin (2003) show that ex ante efficient allocations can be implemented
in a mechanism design setting, eliminating run equilibria. Goldstein and
Pauzner (2005) introduce global games to account for the endogenous run
probabilities and link them to fundamentals. Azrieli and Peck (2012) ex-
tend the Diamond and Dybvig framework to a continuum of depositor types
and show that even efficient equilibria exhibit socially excessive early with-
drawals. Ennis and Keister (2010) highlight how ex post efficient policy re-
sponses, such as deposit freezes, can create ex ante incentives to run. Egan,
Hortagsu, and Matvos (2017) provide empirical evidence on deposit competi-
tion and fragility in the U.S. banking sector. Maingi (2024) studies the 2023
regional banking panic and shows how deposit reallocation toward stronger
banks mitigated output losses. Cipriani, Eisenbach, and Kovner (2024) use
real-time U.S. payments data to trace runs, documenting the role of large
depositors and coordination. Regarding recent events, excellent assessments
can be found in Acharya et al. (2023), Jiang et al. (2023), the Basel Com-
mittee (2023), Angeloni et al. (2024), the “tracing in real time” in Cipriani
et al (2024) and the account in Kelly and Rose (2025). DeMarzo et al. (2024)
examine the interest rate risk on bank franchise values. Chen et al. (2024)
as well as Barrios, Neuhierl, and Schilling (2025) discuss the importance of
hold-to-maturity accounting rules. Blickle et al. (2024) argue that depos-
itor flightiness has increased and that panic runs triggered by policy hikes
become amplified with larger Fed balance sheets. Kim et al. (2024) argue
that reciprocal deposits allowed banks to stem outflows in the 2023 banking
crisis, but that the trade-offs need careful examination. It should be clear

from these extensive descriptions and investigations, that a lot more went on

2For a model of a systemic bank run, see Uhlig (2010).



than the main issue raised here, i.e., the possibility for depositors to invest
in the assets themselves or to find deposits elsewhere offering that market
return, but that this issue was central. We therefore deliberately chose to
narrowly focus on it in our analysis.

We aim to provide a theoretical perspective, as do several recent contribu-
tions. Drechsler et al. (2023) point out the tension between hedging interest
rate risk and liquidity risk exposure. They describe a dynamic game over
time, where withdrawals by insured depositors are modelled following Drech-
sler et al. (2017), and they stress the role of uninsured depositors in triggering
runs. Our analysis complements theirs by focusing on a few key features and
necessarily omitting others. Like us, Amador and Bianchi (2024) stress the
interplay between defaults driven by fundamentals, self-fulfilling runs, and
asset prices. Their analysis differs in many details from ours, focusing on the
externalities of bank leverage decisions and minimum capital requirements.
Our analysis aligns with the perspective of Blickle et al. (2024), who suggest
that depositors weigh the benefits of holding deposits against their outside
investment options.

Our paper addresses issues related to deposit insurance and bank regu-
lation, but others have investigated them in greater depth. Like us, Davila
and Goldstein (2023) build on Diamond and Dybvig (1983) and stress the
tension between fundamental insolvency and panic-driven runs. They exam-
ine optimal deposit insurance in considerably more detail. Likewise, Schilling
(2023) builds on the global-games version in Goldstein and Pauzner (2005)
of Diamond and Dybvig (1983), examining the challenges to an inefficient
regulator in stepping in too early or too late in the case of a run. In light of
these excellent in-depth analyses, we encourage the reader to turn there and

read them in light of the analysis here.



2 The Model

As in Diamond-Dybvig (1983) and following the exposition in Allen and
Gale (2007), we suppose that there are three periods ¢ = 0,1,2 and that
there is a continuum of depositors ¢ € [0, 1], who have one unit of a good in
t = 0, and either must consume in period ¢ = 1 with probability A € (0,1)
(“impatient”) or may postpone consumption to period ¢t = 2 with probability
1 — A (“patient). We suppose their utility from consumption is given by
a strictly increasing, strictly concave and twice continuously differentiable
utility function u(c) with relative risk aversion exceeding unity everywhere,
—u"(c)e/u'(c) > 1 for all ¢. For numerical calculations, we use the CRRA
utility function u(c) = (¢!=7 —1)/(1 — n) with > 1. We assume that there
is a long-term asset that trades at a price of p in period ¢t = 1 and pays
off R > 1 units of the consumption good in period ¢t = 2 for every unit
invested in period ¢ = 1. The benchmark price is p = 1. There are banks
offering demand deposit contracts to agents which allow them to withdraw
d in period t = 1. Competition between banks leads to a demand deposit

contract with ¢; = d maximizing expected ex ante utility
U= Au(cr) + (1 — Nu(cez) (1)

subject to constraints, avoiding a run (more on that below) and subject to

the budget constraints

e = pz (2)
(I1=XNecz = R(1—1x) (3)

where z € (0,1) is the share of the long-term asset sold in ¢ = 1, provided
that no one runs. One might view this as a regulatory constraint or due to
bank prudence. We relax this restriction in the appendix [A] Bank contract

competition implies that the remaining agents receive the remaining asset



payout pro rata when withdrawing in period ¢t = 2. Thus, in case of a bank
run, i.e., if a share u > \ of agents withdraws d in period 1, the remaining

agents will receive co = ¢o5(p, p), where

pd = px(p,p) (4)
(1 —peas(p,p) = R(1—z(p,p)) (5)

provided that pd < p, and where asset sales z(u,p) are needed to meet the

period-1 withdrawals. The result is

1 — ud
C2,s(:u7p) =R 1 _IZ (6)

Note that co (i, p) also depends on d. We avoid noting this dependency
for ease of notation, but will return to that feature in section [6] and in ap-
pendix [Al If ud > p, the withdrawing agents are paid pro rata in period
t=1,¢ =p/p, and ca5(p,p) = 0. At time ¢ = 0, and unlike Diamond and
Dybvig (1983), we assume that p is stochastic. More precisely, we assume
that agents assume p = 1 “for sure” in t = 0 and are then surprised when it
drops to some other value p < 1 instead in t = 1. A drop in p amounts to
a rise in market interest rates between ¢ = 1 and ¢ = 2 and can be thought
of as arising due to monetary policy action. The price is exogenous, since
we think of it as the price of U.S. treasuries, of which SVB held a very tiny
share.

In contrast to Diamond-Dybvig (1983), we assume that the asset is trad-
able in period t = 1 and p > 0 is its market price: the “salvage value”
there is “market price” here. We assume that agents can purchase the assets
themselves and hold them to maturity. We assume that agent ¢ has to pay a
transaction cost and loses resources v; when doing SOE| That is, if a fraction

1 > X of agents withdraw in period ¢t = 1, the asset market price is p and the

3We assume that these transaction costs are lost to the economy and not paid to other

agents. Our stylized assumption is intended to capture the range of possibilities available
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bank can meet all withdrawals, ud < p, a patient agent ¢ will compare the
payoff ¢y s (1, p) from staying in the deposit contract with the payoft ¢s ., (7:, p)
achieved by withdrawing d in period ¢t = 1 and investing d —~; by purchasing
the asset at price p. That payoff is given by

esn(7isp) = §<d ). (7)

If pud > p, the patient agent compares ¢ (1, p) = 0 to %((p/,u) — 7). We
assume that v; has a bounded support in (0, 00). We denote the lower bound
of the support with 7 > 0 and the upper bound with 7 < co. We assume that
~v; is drawn iid across agents from some distribution GG on that interval. It is
surely easier to purchase, say, treasury bonds or invest in money market funds
that do so rather than purchase opaque bank portfolios. Therefore, more
tradeable bank assets should be thought of as corresponding to distributions
G giving larger weight to smaller costs v;: a potentially intriguing avenue for
future empirical research beyond the scope of this paper.

In order to measure financial fragility, we introduce some additional termi-
nology. For every u € [A, 1] and every p € (0, 1], define the critical investment
cost Ve(u, p) as that value, so that co (1, p) = cou(7i,p) for a patient agent
with v; = 7.(,p). In other words, a patient agent i with investment cost
vi = Ye(tt, p) is just indifferent between staying in the contract or withdraw-
ing and investing, at ¢ = 1, provided that a fraction u of agents withdraws
overall and that the market price is p. Thus, patient agents with v < ~.(, p)
would strictly prefer to withdraw in period ¢ = 1 and impatient agents do so

anyway. The total fraction of agents that weakly prefer to withdraw is

m(p,p) = A+ (1 = NG (ve(p, p)), (8)

to withdrawing depositors in practice, including, for example, purchasing money market

fund shares, which now offer higher interest rates between periods 1 and 2, with the fund

investing in these assets.



provided a fraction of agents u actually does so. We call m(u, p) the with-
drawal pressure at withdrawal fraction p and price p.

If m(p, p) > p, then there are more than a fraction p of agents willing to
withdraw, when a fraction of agents u are known to do so, reinforcing the
withdrawals. If m(u,p) < p, then not all withdrawing agents are actually
willing to do so.

An equilibrium for a price p is a value p® € [\, 1], so that m(u¢, p) = p°.
For a given price p € (0,1], we define p as a run threshold, if © = A
or m(u,p) = p and if, for every € > 0, there is a u < fi < pu + €, so
that m(f@,p) > fi. In other words, beyond a run threshold, a run is self-
enforcing: more agents than fi just beyond that threshold are willing to run,
if a fraction fi is withdrawing. We define financial fragility p/(p) as the
lowest run threshold p, if the price p prevails. We call A < p < 1 a partial
bank run, if m(u,p) = p and if for some € > 0 and all p < i < p + ¢,
we have m(fi,p) < fi. In other words, at a partial bank run, the fraction of
agents running is willing to do so, but locally, not more agents would be. A
complete bank run p = 1 requires m(1) = 1. We seek to characterize the set
of run thresholds, financial fragility, the set of partial bank runs, and the set

of equilibria all as a function of p.

3 The benchmark deposit contract

We restrict deposit contracts so that no patient agent wishes to withdraw
and buy the asset herself, when the asset trades at the benchmark price
p =1 and no run occursE] That is, we restrict the search of deposit contracts
maximizing expected utility and allowing withdrawal of d in ¢t = 1 to the

benchmark deposit contract d that satisfies the incentive compatibility

4We relax that assumption in appendix



condition

R(d—7) <ec (9)

where ¢o = c24(\, 1) is given in equation @, and where we recall that
c2.5(A, 1) also depends on d.

To calculate the solution, let (¢}, ¢) denote the social planning solution of
maximizing expected utility subject to the budget constraints and ,
but without imposing (9). As in Diamond and Dybvig (1983), the first-order

condition for an interior solution is
u'(ch) = Ru'(c3) (10)
Since —u"(c)e/u'(c) > 1 for all ¢, one can show that ¢f > 1, see e.g. Allen

and Gale (2007). With CRRA preferences, the solution is

¢ = Rl and ¢; = RY"¢t (11)
(1-=XNR"+ AR

There are now two cases.

1. Suppose that @D is satisfied at d = ¢} and ¢y = ¢§. The benchmark

deposit contract is d = ¢}, since then o 5(\, 1) = 5.

2. Suppose that R(c] —v) > ¢;. In that case, the withdrawal d needs
to be lower than c] to avoid that a positive fraction of patient agents
withdraws and purchases the asset instead. As we seek to maximize
expected utility , it is easy to verify that d should then be chosen as
high as possible, subject to @D, i.e., solving for d by imposing equality
in @D Noting the dependency of ¢y (A, 1) on d, the solution is

d=1+~(1-2X) (12)

resulting in c; = R(1 — \y).



We summarize the case distinction as
d = min{c}, 1 +y(1 - \)} (13)

We note that d > 1, since ¢j > 1 and since 7y > 0. The resulting second
period consumption is ¢ (A, p), if all patient agents stay, that is, if g = A.
If @ binds and if therefore d = 1+ (1 — A) in , then a nonzero
fraction of agents will wish to withdraw in period ¢ = 1 for any p < 1. It
follows that u/(p) = X for any p < 1 in that case. Banking is then “fragile
by design” as argued by Calomiris and Haber (2014), though for different

reasons than in their book.

4 Financial Fragility

Assume that banks have offered the benchmark deposit contract . We
now investigate the relationship between the market price p, the decision
to run and the resulting equilibria. We seek to characterize the set of run
thresholds, financial fragility, and the set of partial bank runs, all as a func-
tion of p in the range 0 < p < 1, which we impose from here on out. We

start by noting some monotonicity and continuity properties.

Lemma 1 1. The second-period payout co s(j, p) for stayers is decreasing

in p and increasing in p, and a continuous function of both arguments.

2. The critical investment cost ~.(, p) is increasing in p and decreasing

in p, and is a continuous function of both arguments.

3. The withdrawal pressure m(u, p) is increasing in j and decreasing in p.
It is a continuous function of both arguments, provided that ~.(u,p) is

not a mass point of G.
Proof:

10



1. Direct per (@, sinced > 1 and p < 1.

2. Solving ¢y s(p1,p) = c2,w(Ve(1t, p), p) for ve(u, p) yields

D d—p
Yelpt,p) = d — SC26(pt,p) = ——. 14
(1, p) Rz( ) = 4 (14)

The result follows from the first part and by inspection.

3. This follows from the second part and by inspecting (@ from the prop-

erties of distribution functions.

We now restrict our attention to the more interesting situations, satisfying

the following two assumptions and imposing them from here on out.

Assumption A. 1 G is a continuous function, that is, it does not have mass

poInts.

This assumption ensures that m(u, p) is a continuous function, according to
the third part of lemma [T}

Assumption A. 2 d—75 >0

This assumption ensures that even the worst investment costs will yield a
strictly positive payoff in period ¢t = 2, as long as the bank can meet all
withdrawal requests, pud < p.E| The assumption is satisfied if v < 1.

We note some properties of the withdrawal pressure function m(u, p).

Proposition 1 1. For every p, there is a lowest u*(p) < 1, so that p <
m(p, p) for all " (p) < p < 1.

5If ud > p, then some patient agents may prefer to receive nothing in ¢ = 2 rather than

invest their pro-rata payout in period ¢t = 1, but the bank run is complete anyhow.
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2. The threshold p*(p) is increasing in p.
3. Financial fragility p/ (p) is increasing in p and satisfies p! (p) < p*(p).

1*(p) is the highest run threshold, triggering a complete bank run: the only
equilibrium for p > p*(p) is p = 1. Part 1 of the proposition implies that a
run threshold exists. The infimum p/ of all these run thresholds is itself a
run threshold and the financial fragility index.

Proof:

1. We have ¢y 5(pt,p) = 0 whenever 1 > p/d. Since d > 1, p/d < 1. By
assumption [2, all agents would then want to withdraw in period t = 1,
i.e., m(u,p) = 1 for all p > p/d. The existence of u*(p) now follows
from the continuity of m(u,p) — p as a function of u, guaranteed by

assumption [1| and the last part of lemma [1]

2. Consider two prices p; < ps. With the third part of lemma |l and all
ft > p*(p), we have m(u, p1) > m(u,p2) > pu and therefore i > p*(p).
It follows that p*(p) is increasing in p.

3. The monotonicity follows as in the second part. Note that p*(p) is a
run threshold. Since p/(p) is the lowest run threshold, it follows that

1! (p) < p*(p).

A bank run is fundamental for price p, if m(A,p) > A. In that case,
A cannot be an equilibrium: some patient agents are always withdrawing in

= 1. A fundamental bank run obtains, iff ¢y, (7,p) > c2,s(A, p), ie. iff

p<p'=d—(1-X), (15)

12



defining p™ as the threshold price for a fundamental bank run. Note that
p" =1, if d is calculated per . Thus, if R(c] —7) > c3, we always have a

fundamental bank run whenever p < 1.

5 Numerical Illustration

In this section, we illustrate the model’s results through a numerical exam-
ple. We assume that agents have constant relative risk aversion (CRRA)
preferences. We set the parameters to n = 2, A = 0.2, and R = 2. Therefore,
¢; = 1.306 and ¢; = 1.847. For the investment cost distribution G(7v), we
consider two alternative specifications. In the first case, GG is uniform in the

interval [y,7], with v = 0.1 and 4 = 1, so that

T

G(y) = T 7€ [, 7]

In the second case, G is piecewise uniform, placing equal mass of 1/3 on each
of the intervals [0.1,0.2],]0.3,.0.4] and [0.8,1], with a uniform distribution
on these intervals, i.e. with density equal to G’(y) = 10/3 on [0.1,0.2] and
[0.3,.0.4], and density equal to G'(y) = 5/3 on [0.8,1]. With that, the
constraint (9) binds for both G, and thus d = 1+ (1 — ) = 1.08 per
equation ((12). This implies that some positive mass of patient agents will
wish to withdraw and that u/(p) = X for all p < 1.  Figure (1| presents
the results under the uniform specification. The left panel shows that the
withdrawal pressure function m(u,p) increases in p and decreases in p, in
line with lemma For the line in the middle, i.e. for p = 0.9, there are
two intersection points. The intersection point A is a fundamental bank run
w"(p): for any withdrawal p € [\, u"(p)] “conjectured” by patient agents,
1" (p) emerges as the equilibrium. There also is the threshold p*(p) at point
B, beyond which only the complete bank run g = 1 can be an equilibrium.

The right panel shows both types of run thresholds, as a function of p. The

13



dark area denotes the area, where a conjectured p will lead to a run, with
the first point vertically above such a p denoting the lowest equilibrium
consistent with such a conjecture. The parabola separates the two thresholds
for p > 0.858, while only a complete bank run is an equilibrium p < 0.858.
This behavior confirms Proposition [I[(ii), which states that u*(p) is increasing
in p, and Proposition (iii), which shows that in continuous G, the financial
fragility threshold p/ (p) coincides with the run threshold u*(p). The fragility
response to prices is smooth and monotonic, meaning there is a single point
at which the run becomes self-sustaining.

In contrast, Figure |2| shows the results under the piecewise distribution.
We have shown the function m(u,p) only for p = 0.95. There are now
increasing as well as flat portions. Point A is a neccessary bank run: even
starting at u = A, at least that many patient agents will withdraw. A u
just above B will trigger a run at least all the way to point C. Finally,
point D is the run threshold p*(p), beyond which only the complete bank
run can emerge. The right panel of Figure [2| shows the bank run regions.
For p > 0.974, the figure looks similar to the right region of the right panel
of Figure[T] i.e., there are the fundamental bank runs at the bottom and the
complete-run threshold p* at the top. For p < 0.974, a new intermediate
region emerges, corresponding to the region between points B and C' in the
left panel of Figure [2l Below p = 0.919, points A and B disappear, and two
bank run regions remain, similar again to the region on the right in the right
panel of Figure[l] Finally, below p = 0.866, u* = ), and only complete bank
runs can be an equilibrium.

We now contrast our results with the calculations emerging from Diamond
- Dybvig (1983)ﬁ For these calculations, we assume that agents cannot
purchase the asset themselves, but can withdraw their deposit in period t = 1

and hold the resources in storage without paying a cost. If the asset price p

6A more detailed discussion of this comparison is in the online appendix B.
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drops, the bank needs to liquidate more of its long-term assets to meet short-
term withdrawals, leaving less to staying depositors receiving the remainder
pro rata in period 2. There is therefore a threshold fraction upp(p,d), so
that all patient depositors withdraw, if at least a fraction upp(p,d) does so.
Figure |3 provides that comparison with two additional red lines demarking
that threshold, for two different levels of d. For the solid line, we use the same
d as calculated above, while the dashed line uses the optimal d calculated
without the “no withdrawal” constraint, i.e., the optimal d emerging from
Diamond - Dybvig (1983). Clearly, fundamental runs do not arise in Diamond
- Dybvig (1983). The thresholds, i.e., the red lines, are independent of the
cost distribution G and are thus the same in both panels. Finally, at high
withdrawal costs and high prices, the withdraw-and-costlessly-store option
can be more attractive: thus, the threshold for panic-driven runs can be lower
at higher prices for the red lines. We can allow for the storage option in our

model, and pursue this extension in the online appendix C.
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6 Deposit Insurance and Regulation

Deposit insurance and regulations are typically implemented to prevent or
mitigate bank runs. Suppose that p remains sufficiently high, but that de-
positors might withdraw simply because they expect others to do so. In this
case, as long as financial fragility exceeds the share of impatient depositors,
u!(p) > X, depositors have no incentive to run if they expect u < u/(p)
will do so. Deposit insurance is designed to keep the share of withdraw-
ing depositors low by assuring patient depositors a sufficiently large payout
co(ji,p) in t = 2 for some i < p/(p). The bank remains solvent, and the
insurance provider does not incur losses, since the asset price, p, is still high
enough to cover all obligations[] By contrast, if the asset price p drops be-
low a critical threshold p™ defined by equation and p/(p) = A, the run
becomes fundamentally driven rather than panic-induced. In this situation,
some depositors are better off withdrawing and purchasing the asset them-
selves, compared to the originally promised payout co (A, 1), thus making a
run fundamental regardless of depositor expectations regarding the bank’s
fate in period 2. Moreover, the bank’s assets become insufficient to pay that
promised amount to the remaining patient depositors. At this point, deposit
insurance can no longer prevent the run without absorbing part of the losses.
At best, a loss-free deposit insurance can assure that the bank run p is no
higher than the lowest partial bank run py, say, but will need to bail in stay-
ers by guaranteeing them a payment of co s(r, p) rather than the originally
promised amount ¢y 4(X, 1)

An alternative policy is to require banks to offer deposit contracts that

"Note that the deposit insurance, as formulated here, does not guarantee the ¢ = 2
payout of the original deposit contract ¢z s(A, 1) for p = 1. Such an unconditional deposit

insurance will make losses whenever p < 1.
8 “Loss-free” is meant to apply to the on-equilibrium path only. If there is, say, a

complete bank run, the deposit insurance will make losses.
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are resilient to asset price drops. Similar to condition @, the regulation
would impose that the choice d = d(p") for the bank deposit contract must
satisfy the constraint

R

27(05 —7) < (A, 0" d), (16)
where p” < 1 is a robustness price set by the regulators, up to which p may
fall without triggering a run, and where co (A, p;d) is given by the right
hand side of equation @, but now explicitly noting the dependency on d. If
the constraint is already satisfied by the social planner solution d = ¢}
and co5(A, 1) = ¢, then the regulation does not impose a cost, but is also
unnecessary, since the original deposit contract is already resilient enough.
However, if the constraint binds, banks have to reduce the promised

early consumption to

d=d(p") =p" +7(1-2) (17)

in generalization of , while increasing the resulting pro-rata period-2
payout to co (i, p; d(p")) compared to the original ¢ s(pt, p) = co,5(p, p; d(1)).
This results in a drop in utility u(d(p"), c2s(A, 1;d(p"))), even if the price
is p = 1 and there is no run, © = A. The contract becomes safer, but
also provides less insurance and consumption smoothing. To quantify the
welfare cost of such regulation, we calculate the welfare loss in consumption-
equivalent terms. Let ®(p”) be the factor that scales the utility given the
original, unregulated deposit contract, captured by a regulator imposing p” =

1, equal the utility under the regulated contract:

Au(d(p) + (1= X) u(eas(A\ 1;d(p"))
= Au(®(p")d(1)) + (1= X) u(P(P") c25(A, 1;d(1)))

Since the regulated contract is less efficient, ®(p”) is an increasing function of

p" with ®(1) = 1. This reflects the drop in overall utility having to follow the
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Figure 4: Consumption Equivalent Welfare Loss from Regulation

regulation. We define the percentage welfare loss in consumption-equivalent
terms as L(p") = 100 - (1 — ®(p")).

In figure 4] we calculate and plot the utility and welfare losses for differ-
ent robustness levels p", using the numerical parameterization of section [f
As p" is set further below p = 1, the figure shows how more resilient deposit
contracts cause greater losses in welfare, as they lower efficiency during nor-

mal times. This highlights a key regulatory trade-off between resilience and

efficiency.

7 The SVB run

We argue that SVB’s collapse represents a fundamental bank run triggered by
a sharp decline in asset prices. Between 2019 and 2021, SVB had expanded
aggressively during the venture-capital boom, tripling in size as deposits from

technology and life sciences clients surged. By the end of 2022, the bank held
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about $209 billion in assets, with roughly 94% of deposits uninsured, more
than double the average for large banks. (Angeloni et al., 2023) These de-
posits came predominantly from technology and life sciences firms, venture-
capital funds, and their portfolio companies, leaving SVB highly exposed to
a single, cyclical sector. Most of these deposits were invested in long-dated,
held-to-maturity (HTM), government or agency-issued mortgage-backed se-
curities (agency MBS), leaving the bank highly exposed to interest rate risk.
As rates rose in 2022, deposit outflows began, and unrealized losses on securi-
ties portfolios increased sharply. (FRB Report, 2023) On 8 March 2023, SVB
announced a restructuring plan involving the sale of $21 billion in securities
at a $1.8 billion after-tax loss, additional term borrowing, and a planned eg-
uity raise. Rather than restoring confidence, the announcement heightened
solvency concerns. On the following day, depositors withdrew more than
$40 billion, and management expected outflows exceeding $100 billion on 10
March. In just two days, actual and anticipated withdrawals amounted to
about 85% of the bank’s deposits. (BIS Report, 2023) These outflows were
not dispersed across many small savers but driven by a relatively small set
of large depositors. Payments data confirm that the dollar value of transfers
spiked far more than the number of transactions, consistent with high-value
withdrawals by corporations and funds rather than retail customers. (Cipri-
ani et al., 2024) The dynamics were amplified by SVB’s concentrated client
networks and the rapid spread of information on social media, which acceler-
ated withdrawals at unprecedented speed. Depositors predominantly shifted
funds to the largest U.S. banks. Unable to withstand the scale of outflows,
SVB was closed by California regulators on 10 March 2023.

In our model, this corresponds to a fundamental bank run. When the
market price of the asset, p, falls below the critical threshold p”, early with-
drawal becomes the rational choice for all depositors. Once this threshold

is crossed, the withdrawal pressure function increases sharply, leading to
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m(A,p) > A. Anticipating further declines in asset value, depositors rush
to withdraw, reinforcing the run dynamics. It may well be that the only
equilibrium was a complete run with u¢ = 1, as shown in the left-most line
of the left panel of Figure [I}

Other U.S. banks were close to failure or indeed failed, but not just there.
In Switzerland, Credit Suisse collapsed. The fall in asset prices was likely a
contributing factor for all of them. Aside from the interest-rate setting role
of monetary policy, these episodes also illustrate the decisive role of regula-
tory timing. Deposit insurance, liquidity support, and emergency backstops
are only effective if introduced before withdrawals exceed critical thresholds.
As shown by Schilling (2023), the effectiveness of interventions depends crit-
ically on when they are implemented, as acting too late may make even

well-designed policies ineffective.

8 Conclusion

In our model, we show that the maturity transformation by banks can give
rise to fundamental bank runs as opposed to the panic-driven bank runs
in Diamond-Dybvig (1983), when market interest rates rise and the value
of bank assets falls beyond critical thresholds, making withdrawals rational
and inevitable. The collapse of Silicon Valley Bank exemplifies a fundamental
bank run, with many other banks also close to failure or having failed at that
time. These events emphasize the importance of timely interventions and ro-
bust bank contracts. Deposit insurance effectively prevents self-enforcing
runs by reassuring depositors, but becomes costly for preventing runs and
less effective during fundamental runs when banks’ asset values fundamen-
tally deteriorate. Regulatory requirements for robust deposit contracts en-
sure stability during asset price declines but come at the expense of reduced

depositor welfare and consumption smoothing. Our analysis highlights the
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key tradeofts.
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APPENDIX

A Deposit contracts with some early with-

drawals by patient agents

In this section, we relax condition @ and allow d to take any value, recog-
nizing that there may be a share of patient agents for which (9) is violated,
even when p = 1. Therefore, agents with sufficiently low investment costs
v; will also withdraw their demand deposit early in period ¢ = 1 and invest
in the long-term asset themselves, even in the absence of an asset price de-
cline. We aim to find the optimal deposit contract, taking into account these
endogenous withdrawals ¢ > A at p = 1. We assume that the withdrawals
can be kept to the minimal or necessary amounts, perhaps with the aid of
deposit insurance.

Substituting second-period consumption @ for agents who remain in the
contract into the critical investment cost per at p = 1, we obtain the

total share of agents willing to withdraw as

d—1
1) = A+ (1= MGGl ) = A+ (106 (1)
This defines the fixed point u(d) as the lowest value p satisfying
d—1
=\ 1-MNG [ —— 18
peAt ) (1 - u) (18)

Fixing the benchmark price p = 1, but recognizing the endogeneity of u

and its dependence on d, define

d—1 1— p(d)d

Ye(d) = ——= and ¢y 4(d) = R—————

D= DT T
with the help of equations (14) and @ In bank competition, the deposit

contract offering withdrawal d in ¢ = 1 maximizes the expected utility of all
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participants. Expected utility is

Ud) = Mu(d)+(1— ) / ear0(7, 1)AG () (19)

7<7e(d)

H(IL = Nufez,s(d) (1 = G (7e(d)))

The planner’s problem is to choose the optimal d* = d to maximize U(d).
If G has a density, one can calculate the first-order conditions and seek
to characterize the solution, see the online appendix. For the numerical
optimization it is easier, though, to try out a range of values of d over a grid,
solving the fixed-point equation for the lowest value of the withdrawal
share p(d) and computing the resulting expected utility U(d) for each d. As
in section [5] we use a CRRA utility function with n = 2 and set A = 0.2
as well as R = 2. We assume that the investment cost distribution G(7)
follows a uniform distribution on [vy,%] with v = 0.1 and 7 = 1, as in the
first case examined in section [5] Similar to the calculations there, solving
the ([18) amounts to solving a quadratic equation in g, as long as v, € [V, 7]:
w(d) can neither fall below A nor exceed unity. The lower value (provided it

is real-valued) is the desired pu(d),

11—\ 1/1-=X\% 1-2\
u(d) =max< A, min<¢1l,1— - —7 — —<_—7) ——(d-1
(@) { { 2 77— 4\7—7 7—1( )

It is real-valued only as long as d < d, where d is obtained by setting the

determinant under the square root to zero and solving for d,

given our parameterization. For d > d, one gets a complete bank run. The
situation is similar to the situation depicted in the right panel of figure [1]
except with d on the horizontal axis and the plot flipped from left to right. A

complete bank run cannot be the optimal deposit contract. One can therefore
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Figure 5: Key outcomes as a function of the deposit rate d.

restrict the search for the optimal d to the interval d € [1,d]. We use a grid
of 5000 evenly spaced points on this interval, including the end points. It
turns out that d is also the numerically optimal contract, i.e. d* = d, see
figure [}l While optimal, this is now an extremely fragile deposit contract.
Any price below one will lead to a complete bank run as opposed to the
fundamental bank runs in figure [l This highlights once more the tension
between efficiency and robustness to price changes, that we also emphasize
in section [G] and the conclusions.

The numerical solution yields an optimal deposit rate of d* = 1.2222,
which maximizes expected utility. In this contract, the equilibrium share of
agents withdrawing early rises to u(d*) = 0.5536, exceeding the baseline im-
patient share of A = 0.2 due to the endogenous withdrawal of patient agents

with low investment costs, up to the critical cutoff 7 = 0.4978. Second-
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period consumption for stayers is ¢; ; = 1.4488, reflecting the trade-off be-
tween early payouts and long-term investment.

From figure |5| we can see how key outcomes change with the deposit rate
d. In the left panel, we have the share u(d) of agents who withdraw early. At
low d, only impatient agents withdraw. As d increases, some patient agents
also withdraw to invest directly, raising p above the baseline A = 0.2. In the
right panel, we notice that consumption in the second period for those who
stay in the contract, cy s, decreases as d increases. This decline reflects the
reduced funds left for long-term investment when more is paid out early.

With this analysis, we demonstrate that even when the price is at the
benchmark level, p = 1, and there are no shocks, some patient agents whose
investment costs fall below the critical investment threshold choose to with-
draw their deposits in period 1 and invest directly in the long-term asset.
For this reason, it is vital to design a deposit contract that accounts for this
behavior, recognizing that a share of patient agents withdraw early because
they benefit more from investing on their own than from waiting until ¢ = 2
for the payoff. In this appendix, we have examined choices for d, that would
lead some patient agents to do so. Formally, this situation qualifies as a
fundamental bank run, as illustrated in figure [I However, it is essential to
emphasize that this type of run is entirely benign, as it does not stem from
panic or coordination failure, but rather from individually rational behavior
given the investment opportunities and taken into account in the deposit
contract design. The heightened fragility should, however, give pause before

implementing such optimal deposit contracts at the edge of the abyss.
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ONLINE APPENDIX

Numerical Example: Calculations

In this section of the Online appendix, we provide analytical derivations that

support the numerical illustrations presented in Section[5] We explicitly solve

for the equilibrium withdrawal behavior under three distinct assumptions

about the distribution , which describes agents’ transaction costs associated

with investing in the long-term asset.
We begin with the expression for the cutoff agent type :
d—p

=— 20

=T, (20)

Next, we define a parameter to clearly establish the lower bound on the

early withdrawal payoff :
d=1+7(1-X) (21)

Using this definition, we rewrite the cutoff agent type as follows:

-\ 1-
o= BN 1o )
1—p 1—p

We then calculate the total fraction of agents who withdraw early, based

on this cutoff type. The withdrawal function is given by:

m(p,p) = A+ (1 =A) - G (ve(u,p)) (23)

Example 1: ¢ Uniform on [y, 1]

We assume that transaction costs follow a uniform distribution on the interval
[v,1]. The withdrawal function m(u, p) depends on the position of the cutoff
type .. Specifically:

31



Ye <7 = m(u,p) = A
Y<e <1 = mp,p) =2+ (1-X) 7= (24)
Ye > 1 = m(u,p) =1

Solving for Bank-Run Points: 1 = m(u,p)

To find fixed points, we assume that the cutoff lies within the support, 7 <

Y. < 1. Substituting the expression for 7., we write:

(D) e

We simplify this equation by introducing two parameters:

1—A 1—A
P )\ _ R . f}/7 V= — (26)
1=/ = 1-7y
This allows us to rewrite the equation as:
d—p
= . 27
pert i (27)

We then multiply both sides by (1 — i) and rearrange terms to obtain the

quadratic form:
0=(p—r)(p—1)+v(d-p) (28)
Expanding this expression gives:

p —ap+ Bp) =0 (29)

where:

a=rk+1, pp)=r+rv(d-Dp) (30)

We solve this quadratic and obtain the general solution:

fio = %j:\/é(p), where p*(p) is the larger root, and ps(p) is the smaller one
(31)
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(A) We find two real solutions if the discriminant is non-negative:

o?
d(p)=—- —Bp) 20 (32)
(B) If 6(p) < 0, or equivalently:
o2
p<p*:<z+/~f+yd)/u (33)

then no interior solution exists and we conclude that the only feasible

equilibrium is a full bank run:

pe=A (34)

Example 2

We now analyze a case where transaction cost types follow a bimodal distri-

bution. In particular, we assume that G is uniform on two disjoint intervals:

[V, 7] and [y, 1] (35)

Each segment carries half of the total probability mass.

Defining the Withdrawal Function

The share of agents who withdraw depends on the value of the cutoff 7.. We

summarize the behavior of the withdrawal function below:

e 1 :>m(ﬂ7p)=/\

T<% <% = mnp) = A+ 15 =

/VaS’YCSrYb im(ﬂ,p):% (36)
WS = mnp) = 5P

’}/C>1 :>m(:u7p):1



(A) Increasing Region: p € [A, 1(1+ )]

We now focus on the first increasing segment of the withdrawal function,
where the marginal cost types fall within the lower support of the bimodal
distribution, i.e., 7. € [7,7,). In this region, the withdrawal function is given

by: \
].— 70_7

mpp) = A+ - =

( ) 2 Ya — 7

(37)

This expression captures how the share of withdrawing agents increases lin-
early with 7.

To determine equilibrium points, we impose the fixed-point condition
= m(u,p). Substituting the expression for the cutoff threshold,
_d-p

= (38)

Ye

into the withdrawal function yields:

u:A+1;A,(%£1>(f:2_1) (39)

To simplify this expression, we introduce two auxiliary parameters:

1—\ 11—\
ke 2. 2 = (40)
2 Ya—7y 2(Ya — )

This allows us to rewrite the fixed-point equation in a more compact form:
d—p

- (41)

U=K+U-

Multiplying both sides by 1 — p to eliminate the denominator leads to a

quadratic equation:
p(l —p) = w(l —p) +v(d—p) = p* —ap+B(p) =0 (42)

where:
a=rk+1, pBp)=r+v(d-—Dp) (43)
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This quadratic equation governs the equilibrium values of p. The number
of real solutions depends on the discriminant:

CY2

3(p) = =B (44)
We obtain two distinct real solutions when 6(p) > 0, which occurs for:
o2
p<p>{:<z+/<a~l—yd)/u (45)

In that case, the equilibrium values of y are given by:

fi12 = % £ 1/d(p) (46)

We must then verify whether these roots fall within the admissible range
[/\7 %(1 + /\)} If they do, they represent feasible equilibrium levels of early
withdrawals. If §(p) < 0, however, the quadratic equation has no real roots,
and the model predicts that no partial-run equilibrium exists in this region.

Instead, the only consistent outcome is a full bank run: p = 1.

(B) Constant Region: = (1 + \)

We now analyze the flat region of the withdrawal function, where the fraction
of agents choosing to withdraw remains unchanged as long as the cutoff ~,
lies in the interval [y,, ). In this zone, the value of the withdrawal function
is fixed at:

1+ A

m(p,p) = o (47)

This reflects the fact that exactly half of the agents from the ”high-cost”

group (uniformly distributed over [y, 1]) are not yet incentivized to with-

draw. Consequently, the withdrawal mass remains constant at this value.
We aim to determine under which conditions this value of p satisfies the

fixed-point condition:

p=m(u,p) (48)
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Specifically, we test whether ;1 = 1(14 \) can be a valid solution. For this to

hold, the corresponding cutoff v, must fall within the constant region, i.e.,

Ya S Ve S o (49>
Substituting the expression for the cutoff threshold, ~. = f%i, into the con-
dition above yields:
<_d=r (50)
=TT
Simplifying the denominator:
1 1—A
1—=(14X)=— 51
SN = — (51)
we rewrite the inequality as:
2(d —p)
<P 52
Ya > T—\ = Yo (52)
Solving for p, we obtain the interval:
1 1
pe d—§(1—)\)7b> d—§(1—>\)% (53)

This means that for any price p within this interval, the system admits a
fixed point at the intermediate value p = %(1 + A), corresponding to a ”par-
tial run” equilibrium. Importantly, in this region, small variations in p do
not change the share of agents withdrawing, since 7, remains inside the gap
between the two modes of the transaction cost distribution. This behavior
introduces a plateau in the withdrawal response and reflects a zone of coor-
dination inertia, where agents’ expectations are self-fulfilling and resistant to

minor fluctuations in incentives.

(C) Increasing Region: p € (1(1+ ), 1)

We now analyze the second increasing region of the withdrawal function,

corresponding to the upper segment of the bimodal distribution. In this
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region, the cutoff type 7. lies in the interval [y;, 1], meaning that an increasing
share of the "high-cost” agents begins to withdraw as incentives improve. The
withdrawal function in this region is given by:

1+)\+1—)\ Ye — Vo
2 21—,

m(p, p) = (54)

To find equilibrium points, we again impose the fixed-point condition

= m(p, p), and substitute for the cutoff type using:

d—p
e = —— 55
=1, (55)
This gives the equation:
I+XA 1-AX 1 d—p
= : — 56
=
To simplify, we define:
1+A 1-=2X 1—A
K= A " , V= ——— (57)
2 21— 2(1 — )
This allows us to rewrite the fixed-point equation as:
d—p
= . 58
p=rtv =L (58)
Multiplying both sides by 1 — 4 and rearranging leads to the quadratic
equation:
= ap+ B(p) =0 (59)
where:
a=r+1, Bp)=r+v(d-p) (60)

This equation characterizes equilibrium values of p in the upper region
of the withdrawal function. As before, the nature of the solution depends on

the discriminant:

6(p) = — — B(p) (61)



There are two real solutions if d(p) > 0, which corresponds to the condi-
tion:

2
p<p}§:(%—|—r<c—|—ud>/u (62)

If this condition is satisfied, the equilibrium values are:

mazgixww) (63)

We then check whether these solutions fall in the admissible region:
pio € [3(L+N), 1] (64)

If both roots lie in this range, they represent feasible equilibrium levels of
early withdrawal in the upper region. Among them, the upper root pu*(p) is
typically interpreted as the stable equilibrium when multiple equilibria exist.

If the discriminant is negative, i.e., d(p) < 0, then the model predicts
no interior fixed point in this region. In that case, all agents are induced to

withdraw and a full-scale bank run occurs: p = 1.

Example 3: Trimodal Distribution

We now study a case where transaction cost types follow a trimodal distribu-

tion. Specifically, we assume that GG is uniform over three disjoint intervals:

V.l el 74,9 (65)

Each interval carries one-third of the total probability mass. This setup
captures a population where agents cluster around three distinct transaction

cost levels.

Defining the Withdrawal Function

We define the share of agents who withdraw, m(u,p), based on the cutoff

type 7. = %‘ The function depends on where this cutoff falls relative to

the three intervals:
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Ye < = m(p,p) = A

(A) v<wes<mn = mp) =A+ g2
(B) 1 <v%<7v =mpp = 1+32,\
(C) %<y <s =mlup) =12+ 152 20 (66)

(D) v <7<y =m(u,p) =22

(E) m<7<y =mup) =222+ 12 10

|7 <% = m(u,p) =1

This function has five distinct regions. It increases in segments (A), (C),
and (E), and remains flat in (B) and (D). The shape reflects how agents from
each group start withdrawing once the price is low enough relative to their

cost of waiting.

Cases (A), (C), and (E): Increasing Segments

In regions (A), (C), and (E), the withdrawal share increases with .. To find

the equilibrium value of i, we solve the fixed-point condition:

= m(p, p) (67)
Using the structure of each segment, we write this condition as:
d—p
= . 68
p=rty L (63)

We summarize the constants x and v for each increasing region:

Region K v
-\, 2 1-2
(4) AR e crey (69)
(C) 142X 1=X | 72 1-A
3 3 y3—72 | 3(v3—2)
20N _ 1) o 1-)
(E) 3 3 ﬁ—474 3(7—74)




Each pair (k,v) leads to a quadratic equation for pu. We rewrite the

fixed-point condition as:

= ap+ B(p) =0 (70)

with:
a=r+1, Bp)=r+rv(d-Dp) (71)

To find valid solutions, we compute the discriminant:
o?
3(p) = =B (72)
We find two real solutions for p when §(p) > 0, which happens if:
2

p<p*:az+li—|—Vd/V (73)

The solutions are:
«a
fe2 =5+ vV 4(p) (74)
We then check whether these roots fall within the relevant interval for

each segment:

(A): € [N H2]5(C): o € [B52, 225 (B): o €[5, 1.
Only roots inside these intervals represent valid equilibrium withdrawal
shares. If 6(p) < 0, then no fixed point exists in the region. In that case, the

model predicts a jump to a higher withdrawal level or a full bank run.

Cases (B) and (D): Flat Segments

In regions (B) and (D), the withdrawal function m(u,p) is constant because
the cutoff type 7. lies in a gap between two populated intervals of the trimodal
distribution. No agents are located in these intervals, so small changes in 7,

do not alter the share of agents who withdraw.
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To test for equilibrium, we check whether the fixed-point condition u =
m(u, p) holds for the constant values of p that define these flat segments. In

region (B), we set:
142X

In region (D), we use:
24 A
p=hp = = (76)
We substitute each expression into the cutoff formula ~,. = i;ﬁ, and solve
for the values of p that keep 7. inside the corresponding flat region.
In region (B), we require 7. € [y1,72]. Substituting up, we obtain:
d—1p 24+ 24+ A
< < & € |d— , d— 7
N -< p { 3 3 71} (77)
In region (D), we require 7y, € [v3,74]. Substituting pp, we find:
d—p 142X 1+2X
s < <mu & pe|d- Ya, d = 3 (78)
1— 1235) 3
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Appendix A: Calculations

First-Order Conditions

Generally, if G has a density g(v) = G'(7), one can then calculate the first-
order condition (FOC) with respect to d for maximizing U(d) as

0=U'(d) = \/(d) + (1= A) [t/(c2,(d))c) () (1 = G (1e(d)))
+7e(d) (C2,0(e(d), D)g(ve(d)) — ulca,s(d)g (ve(d)))] (79)

The relevant derivatives are

Wlenld) = = (@) (o)

, 1 i-1
WD = T (1—u<d>"<d)‘1)

where p/(d) follows from and the implicit function theorem or, more

directly, by plugging in u(d) for p, taking the derivative with respect to d as

1 (d) = g(ve(d))ve(d)
and solving for y/(d) as

(1 — u(d)g(e(d))

W) = @) — g(u(@)d— 1)

Equilibrium with Uniform Distribution over [y,7]

In this section of the online appendix, we provide analytical derivations that
support the numerical illustrations presented in Section [A] We analyze the
fixed-point condition for early withdrawals under the assumption that trans-
action costs are uniformly distributed over the interval [y,7%]. This case offers

a tractable benchmark for understanding equilibrium selection in the model.
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The cutoff type 7., which separates early and late consumers, satisfies:

d—1
%—m (80)

Since agents withdraw if their type is below the cutoff, the share of agents

who withdraw equals the cumulative distribution evaluated at 7.. The fixed-

point condition becomes:
d—1
) 1)

Under the uniform distribution, the cumulative function is:
G(7) T (82)

v) ==
T

Substituting into the fixed-point equation gives:

1 d—1
w=A+ 1—)\_—(——7) 83
-0 (72 (33)
To simplify, define v = 1 — u. We then rewrite the equation as:
1 d—1
Iyt 1—>\_—< _7) 84
1-n=— (52 (34)
Multiplying through by (¥ — ) gives:
_ d—1 _
T-DA=-r)=0-N)—=+AT-2) -1 -A)q (85)
Rearranging:
_ _ d—1
=M= -r(T-1)=>0-A—= 1=} (86)
or
_ _ d—1
(1= N7 =T -2) = (1= N (87)
Multiplying both sides by v/(¥ — v) yields:
1—A , 1—=A
— v —vi=——(d-1 88
— 1( ) (88)

T
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This is a quadratic equation in v. Bringing all terms to one side:

1-— 1 -
2 - = A7w+_ Aw—lyzo (89)

Y= Y=

14

We solve using the quadratic formula:

11—\ 1/1-=X2\> 1-2)\
12555, \/4 T _( ) (90)

Returning to p =1 — v, we get:

1 1-—2)\ 1/1=X2\> 1-2)\
pe=1-- - —7% Z(:—Jﬂ ———(d~-1) (91)
-7 -7 ¥

[\

We obtain real-valued solutions whenever the discriminant is non-negative:
1/1-XA_\* 1-2)
o(d) = — (_—7) ——@d-1)>0 (92)
A\T-2 -1
Solving for the threshold where d(d) = 0, we find the maximum value of d

that allows an interior solution:

e (93)

>

d=1+

o |
=2
[

Equilibrium with interior withdrawal behavior exists if and only if d < d.
If d > d, the quadratic has no real roots and the only solution is y = 0,
implying a full bank run. Further, the quadratic solution is only valid for
Ye > 7. Since g = A at that value, this implies that the quadratic solution is
only valid for d > d, where d = 1 + (1 — A)y. We therefore restrict attention
to values

d e [dd

in order to use the solution to the quadratic equation . Outside, we have
p(d) = X for all d < d and p(d) = 1 for all d > d. For any such d, we can
solve the fixed-point equation directly or use numerical methods to compute

the equilibrium share of early withdrawals.
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Appendix B: Comparison to Diamond—Dybvig

Benchmark

In this section of the online appendix, we discuss the difference in fragility
between our framework, where depositors can invest directly in the asset,
and the standard Diamond-Dybvig (DD) benchmark model, where the only
outside option is storage at a zero interest rate. As shown in Section [3]
when the incentive compatibility condition @D binds, the benchmark deposit
contract equals d = 147(1—\) given in equation (12)). This contract ensures
that no patient depositor prefers to withdraw and invest directly in the asset
when p = 1. However, this comes at the cost of increased fragility, as, as soon
as p < 1, the outside investment option dominates the continuation payoff
ca(p, p) for the most efficient patient agents with v = 7, and they withdraw.
Consequently, the financial fragility threshold equals the share of impatient
depositors:

pl(p) =X forallp<1

implying that the no-run equilibrium breaks down immediately when p < 1.
This contrasts strongly with the standard Diamond-Dybvig model, where
early withdrawal by patient agents is only optimal if the expected t = 2
payout falls below d. In the Diamond-Dybvig world, the patient depositor
compares d to ca(p,p) given in equation () and runs only if co(p,p) < d.
Solving ca(p, p) = d for p we find the critical threshold ppp(p, d):

p(R —d)
d(R —p)
which is strictly higher than A as long as d > 1 and p is close to one,

pop(p,d) = (94)

and is the minimum fraction of withdrawals necessary for patient depositors
to join a run in the Diamond-Dybvig world. Hence, in the DD model, some

price decline can be absorbed without causing a run, whereas in our model,
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runs start as soon as p < 1. We compute ppp(p,d) for the two benchmark
deposit contracts to illustrate this point. Under the constrained contract
d=1+~(1-X), from equation (12), d = 1.08, the DD threshold at p =1 is
about 0.83, meaning that at least 83% of depositors would need to withdraw
to trigger a run in the DD modelﬂ Even when p falls to 0.8, the DD threshold
remains at 0.57, still well above the fundamental fragility level of 0.2 in our
model. If instead we use the unconstrained first-best contract ¢j = 1.306,
given in equation , the DD thresholds are lower, but still substantially
above our model’s A\. At p = 1, the DD run threshold with ¢} is about 0.52,
and at p = 0.8, it remains around 0.36. We see that the constrained contract
d = 1.08 results in a higher critical run threshold at each price p compared
to the unconstrained optimal ¢ = 1.306.

Figures [6] and [7] illustrate this comparison graphically by overlaying the
two Diamond-Dybvig (DD) threshold lines, pupp(p, d) and ppp(p, ¢;), corre-
sponding to the constrained benchmark contract and the unconstrained first-
best contract, respectively, on the fragility regions shown in Figures [I] and
of the main text. The figures show that our model exhibits fragility at much
lower levels of withdrawals compared to the Diamond-Dybvig benchmark.
In our framework, any decline in the asset price below p = 1 is sufficient
to trigger a run, while in the DD model, the banking system remains stable
as long as withdrawals remain below the critical DD threshold. This differ-
ence highlights the key insight of our analysis that the presence of outside
investment opportunities makes the banking system more fragile, as even
small declines in the asset price are sufficient to trigger runs, whereas the

standard Diamond-Dybvig mechanism requires a much larger deterioration

9The run is then complete. The fraction is lower than the complete run threshold p* (1)
in our model, since agents in the Diamond-Dybvig model have access to storage, while the
agents in our model invest, after deducting a fee, to consume in period ¢ = 2, see equation

@. The latter can imply a lower second-period consumption for high fees ~;.

46



bankruns

Figure 6: Withdrawal pressure and financial fragility with ppp (Linear G)

before instability occurs.
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Appendix C: Storage Option and Fundamental
Run Thresholds

In this section of the online appendix, we extend the baseline environment
by allowing withdrawing depositors to store resources fromt =1tot =2 at
a gross return of 1 (i.e. 0%). A patient depositor who withdraws at ¢t = 1
therefore has two outside options: buy the asset and hold it, incurring an

idiosyncratic transaction cost ; or store the withdrawn resources until ¢ = 2.

Payoffs with storage

We fix (u, p,d) with p € [A, 1], p € (0,1], and promised ¢t = 1 payout d > 0.

Stayers. If the bank can meet withdrawals in ¢ = 1, i.e. ud < p, the pro-rata
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t = 2 payoff to stayers equals

1 (ud)/p

— (95)

CQ,S(M? p) = R

If pd > p (rationing in ¢ = 1), then ¢y 4(p, p) = 0.
Withdraw and store. A withdrawing depositor who stores obtains at ¢t = 2
d, if ud < p (no rationing),

Cost(1ts ) = (96)
p/p, if pd > p (rationing).

Withdraw and invest. A patient depositor with cost v; who buys the asset

in ¢t = 1 obtains
R
C2,w(%ap) = 5 (d - %’) (:ud < p)? (97)
and ¢z, (7i,p) = % ((p/#) — ) under rationing.

A patient depositor compares max{cagt, C2.} t0 2 and withdraws iff

the former is weakly larger.

Withdrawal pressure with storage

Let m(u, p) denote the fraction of agents who would withdraw if they believe
i agents withdraw at price p. With storage, two thresholds govern m(u, p)

without rationing: the storage wall, where co s = ¢ and the rationing line

pud = p.
Formally,
L, pd > p,
m(p,p) =< 1, pd < pand ey (p, p; d) > ca (i, p; d),

A+ (1= X)) G(velp,p;d)), pd < pand cage < o,
(98)
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where G is the CDF of +; on [y, 7] and

Ye(pt,p) = d— %CQ,S(MJ) (pd < p). (99)

Thus, to the right of either wall, all patient depositors withdraw.

Storage wall. Without rationing, storage solves d = ¢ s(u, p). Using (95),

_ p(R—d)

pop(p,d) = d(R=p) (p < R). (100)

For u > ppp(p,d) with pud < p, storage weakly dominates staying and

Benchmark contract with storage

At (u,p) = (A, 1), preventing storage-driven withdrawals requires d < ¢o 5(A, 1).
Using at (A, 1), this restriction binds at

R
st
T = (1=X)+ R\ (101)

Imposing also the investing IC at (A, 1), d <1+ 7(1 — A), and the planner’s

c;, the benchmark early payout becomes

d = min{ ¢, &, 147(1 —A)}. (102)

Fundamental runs at = A\

A fundamental run at u = X arises when, even without panic, a positive mass

of patient agents prefers to withdraw.

Investing trigger. The lowest-cost at which patient agents prefer to with-

draw and invest iff .
E (d - 1) Z CQ,S()‘ap)a (103)
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which is equivalent to the price threshold

p < pinvest(d) =d-— (1 - )\) - (104)

Storage trigger. Storage dominates staying under no rationing iff
d Z 62,8()\7]))7 (105>

yielding
AR

R—d(1—=X\)"
At d = d*, psiore(d™) = 1 by construction.

P < Dstore(d) = (106)

Rationing at © = . If p < Ad, the bank cannot meet withdrawals already
at u = A, implying m(\, p) = 1.
Combining these three points, a fundamental run at u = A occurs when-

ever

P < pfund(d) = maX{pinvest<d)7 pstore(d)7 )‘d} (107>

Numerical illustration with storage

In the left panel, for p € 0.8,0.9,1, the curves m(u,p) are weakly increas-
ing in p and jump to 1 at: (i) the storage wall u = upp(p,d) where
Cost (4, ) = c2.5(t, p) (see (L00)), and (ii) the rationing line p = p/d where
the bank cannot meet withdrawals in ¢ = 1. The dashed 45° line marks
fixed points m(u, p) = p. Labels A, B, D indicate equilibria at the marked
prices; C' marks m(A, 1) on the p = 1 curve. In the right panel, the dark blue
shaded area indicates the run region (p,u) : m(u,p) > p; while the white
area indicates (p, ) : m(u,p) < p. The dashed black curve is the storage
wall pupp(p,d) = Sggjg (valid for p < R). The vertical dashed lines show
p = 0.8 (light blue), p = 0.9 (red) and p = 1 (green). The points A, B,C

correspond to the left panel.
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Figure 8: Withdrawal pressure and run regions with storage.

Storage introduces a y-independent withdrawal margin: once d > ¢o 5(, p),
all patient depositors prefer to withdraw and store, regardless of their idiosyn-
cratic cost ;. The cap d* in captures the store-versus—stay trade-off at
(A, 1) and is independent of the transaction-cost distribution G. Consistent
with , storage cannot improve resilience: it is either nonbinding or it
raises the price at which fundamental withdrawals begin, thereby expanding

the set of (p, ) pairs that trigger runs.
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